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Abstract: Background/Objectives: The objective of this study was to clinically validate
the performance of the Nanox.AI HealthOST software in detecting incidental vertebral
compression fractures (VCFs) on outpatient chest and abdomen CT scans using sensi-
tivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
A secondary aim was to assess the rate of missed VCFs using initial radiologist reports.
Methods: A retrospective analysis was performed on 590 outpatient CT scans. HealthOST,
an artificial intelligence solution from Nanox.AI that allows for automated spine analysis
using CT images was evaluated against a consensus ground truth established by two
radiologists, including a senior musculoskeletal radiologist. Two vertebral body height
reduction thresholds were tested: mild (>20%) and moderate (>25%). Original radiologist
reports were reviewed to identify missed VCFs. Results: At the 20% threshold, the AI
achieved a sensitivity of 92.0%, a specificity of 52.7%, a PPV of 16.5%, and an NPV of 98.5%.
At the 25% threshold, sensitivity decreased to 78.0%, while specificity improved to 94.2%,
with a PPV of 51.1% and an NPV of 98.2%. The AI identified 88% and 92% of fractures
missed by radiologists at the 20% and 25% thresholds, respectively. Conclusions: The
Nanox HealthOST AI solution demonstrates potential as an effective screening tool, with
threshold selection adaptable to clinical needs with a secondary review by a radiologist
that is advisable to ensure diagnostic accuracy. The study further indicates that radiologists
often overlook VCFs in reporting non-indicated cases and that AI has a role in enhancing
the detection and reporting of vertebral compression fractures in routine clinical practice.

Keywords: vertebral compression fractures; artificial intelligence; osteoporosis; spine
imaging

1. Introduction
With the rising prevalence of osteoporosis in Canada and globally, vertebral compres-

sion fractures represent a growing public health concern for fractures associated with the dis-
ease [1–5]. Osteoporosis-related fractures can greatly impact a person’s overall well-being
and quality of life [6–9]. Osteoporosis-related fractures substantially contribute to the health
care burden through high rates of hospitalization, rehabilitation needs, and the increased
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likelihood of long-term disability and dependence on extended care services [10–13]. Pa-
tients with osteoporotic fractures have demonstrated up to a 5-fold increased fracture risk
within 2 years post primary fracture [14–17].

Vertebral compression fractures (VCFs) are among the most common osteoporotic
fractures noted [18–20]. The 5-year survival rate post vertebral body fractures can be as
low as 28%, potentially due to deteriorating symptoms and functional status [21–23]. Up to
two-thirds of VCFs are incidental findings initially identified through imaging, but the ma-
jority of the VCFs on Computed Tomography (CT) scans remain incompletely reported or
missed [20,24,25]. This is due to the fact that these fractures are often asymptomatic [25–27].
Early detection and intervention can provide significant benefits to patients by preventing
future fractures, alleviating symptoms, and reducing morbidity and mortality [18,28]. Even
after identifying the fractures, clinical management is often inadequate. When compared to
acute coronary events, 90% of patients receive secondary preventive care while only 10–20%
of individuals with osteoporotic fragility fractures are prescribed appropriate medications
to reduce the risk of future fractures [5,14,29]. To address the gaps in VCF detection and
management, multiple approaches have been proposed. Nanox HealthOST V1.1 software
is an artificial intelligence (AI) software approved by Health Canada and the FDA that
has demonstrated promise in opportunistically detecting VCFs on CT scans performed for
unrelated diagnostic purposes.

The primary aim of this study is to validate the performance of Nanox.AI’s HealthOST
software in detecting incidental vertebral compression fractures (VCFs) on chest and
abdomen CT scans and evaluating the specificity, sensitivity, positive predictive value,
and negative predictive value of the software in its detection. A secondary objective is
to determine the prevalence of missed VCFs in outpatient CT scans at our institution.
Recognizing previously undiagnosed vertebral fractures is clinically important as it signals
a heightened risk for future fragility fractures. Early identification may lead to timely
prophylactic treatment with bone-strengthening medications, as recommended by clinical
guidelines, which will potentially reduce future fracture risks and associated morbidity
and mortality. This study is significant in that it verifies the effectiveness of AI technology
that has already been approved and commercialized, emphasizing its practical application
as a reliable diagnostic aid in routine clinical settings.

2. Materials and Methods
This retrospective study involves the selection of 675 outpatient cases from St.

Michael’s hospital, spanning from February 2019 to March 2020. The de-identified CT data
was analyzed using HealthOST, an AI solution by Nanox.AI designed for automatic image
analysis of the spine. This provides a tool for clinicians for the evaluation of indicators of
osteoporosis and for detecting VCFs. The Nanox software’s results were evaluated using
two different detection thresholds: mild (>20% vertebral height reduction) and moderate
(>25% vertebral height reduction). These thresholds were used to compare the software’s
findings with the radiologists’ assessments.

Following the initial AI analysis, two experienced radiologists reviewed all scans to-
gether and reached a consensus, establishing a single ground truth. The first reviewer was a
senior musculoskeletal (MSK) radiologist, while the second was a fellowship-trained emer-
gency radiologist with extensive experience in diagnosing vertebral fractures in trauma
settings. Discrepancies were resolved through consensus discussions between both radiolo-
gists. In particularly complex cases, additional input was sought from a highly regarded
colleague specializing in orthopedic surgery and metabolic bone disease to refine fracture
classification and ensure diagnostic accuracy. After establishing the ground truth, we
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compared it to the AI results and reviewed the initial radiology report for any missed
fracture detections.

The radiologists employed the Genant semiquantitative (GSQ) grading scheme, sup-
plemented by quantitative morphometry (QM) for fractures where the actual height loss
was measured. The actual measurement was taken in the anterior, mid, or posterior seg-
ment of the vertebral body and compared to the ratio of the corresponding segment of the
closest normal vertebral body above or below. The severity of the fractures was graded
using the GSQ grading scale as follows: grade 0, less than 20% height loss; grade 1, 20–25%
height loss; grade 2, 26–40% height loss; and grade 3, more than 40% height loss [30].
Fractures were distinguished from non-fracture deformities by assessing endplate disrup-
tions and vertebral body cortical buckling. The modified morphological algorithm-based
qualitative (mABQ) method was not formally adopted as the current machine learning
system Nanox.AI cannot reliably detect these morphological criteria.

The inclusion criteria for this study encompass outpatients who underwent chest
and/or abdomen/pelvis CT scans at St. Michael’s hospital from February 2019 to March
2020. Participants were enrolled consecutively based on the chronological order of their
CT scan dates and times to minimize selection bias. Only patients over the age of 50 were
considered. The selection of the cutoff date, 1 March 2020, was intentional to exclude
any potential confounding effects of the COVID-19 pandemic. This study was limited to
outpatient CT scans to specifically assess our secondary objective, which was to evaluate
incidental vertebral fractures that typically go unnoticed in the outpatient setting. In con-
trast, inpatient and emergency scans often involve acute trauma cases with higher clinical
suspicion of fractures and more deliberate reporting. Additionally, we selected individuals
aged ≥50 years to enrich the population with patients at greater risk of osteoporosis and
vertebral compression fractures, thereby aligning with the intended clinical use case for
opportunistic screening.

The exclusion criteria comprised patients younger than 50 years, those with spinal
hardware fixation, and cases where the CT scan report lacked an available clinical indication
or had indications related to assessments for vertebral body fractures. CT scans composed
of excessive artifacts such as beam hardening and motion artifacts were also excluded. CT
scans that did not have an adequate number of vertebral bodies to visualize the thoracic
or lumbar spine were also excluded. Patients with preexisting medical conditions were
not excluded.

HealthOST uses a Convolutional Neural Network (CNN)-based AI solution that
automatically identifies suspected findings suggestive of vertebral compression fractures
on chest and abdominal CT scans. The AI first ensures scan eligibility by analyzing CT
DICOM metadata, which includes CT modality, patient age of ≥50 years, kVp range
of 80–140, and a maximum slice thickness of 3.1 mm for axial scans and 5.1 mm for
sagittal scans. Once eligibility is confirmed, AI Model #1, based on a U-Net architecture,
segments the spine on each axial slice, creating a structured vertebral framework. Following
segmentation, AI Model #2, utilizing a RetinaNet architecture, annotates each vertebra with
its corresponding label and places three height measurement lines at the anterior, middle,
and posterior aspects of the vertebral body, positioned nearest to its center to facilitate
fracture detection (Figure 1). In the attached figure, the AI also provided attenuation
values for diagnosing osteoporosis based on low bone density, which were not assessed in
our study. The percentage of vertebral height loss is determined by comparing the three
different height lines for each complete vertebral body within the thoracolumbar spine.
Vertebral height loss values that exceed a predefined threshold are highlighted to provide
the user with clear indications of significant compression.
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Figure 1. AI-based L2 vertebral compression fracture calculation and attenuation value of L4 low
bone density: representative example.

3. Results
3.1. Study Cohort

The dataset comprised 675 outpatient cases selected between February 2019 and
March 2020, which were subsequently sent for automated image analysis using artificial
intelligence (AI). Two AI algorithms were employed: one that assessed fractures above
a 20% loss of vertebral body height and another one that assessed above a 25% loss of
vertebral body height. A total of 65 cases were excluded from the AI analysis due to
non-compliance with the algorithm requirements for five primary reasons: less than 15 cm
of the spine was detected (34 cases); fewer than four vertebrae were observed (13 cases);
there was an absence of a valid CT series (7 cases); there was an insufficient number of
images, specifically less than 20 (8 cases); and systemic error (3 cases). Out of the remaining
610 cases, a further 20 cases were excluded during review when bone metastasis (16 cases)
and spinal hardware (4 cases) were discovered, which left 590 cases for the final analysis.

Table 1 presents a demographic analysis of patients with and without vertebral frac-
tures. Patients with fractures were older, with a mean age of 72.5 years (SD 10.7), compared
to those without fractures (mean age 66.9 years, SD 9.7). Regarding gender distribu-
tion, a higher proportion of females had fractures (55.9%) compared to males (44.1%).
These findings indicate a higher prevalence of fractures among older individuals and a
slightly higher proportion of fractures in females relative to their total representation in the
study population.

Table 1. Patient demographics.

Number of Patients Fractures Normal Total

Mean age, years (SD)
[CI]

72.5 (10.7)
[70.3–74.7]

66.9 (9.7)
[66.0–67.8]

67.8 (10.1)
[67.0–68.6]

Number of males (%)
[CI]

41 (44.1%)
[0.34–0.54]

273 (54.9%)
[0.51–0.59]

314 (53.2%)
[0.49–0.57]
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Table 1. Cont.

Number of Patients Fractures Normal Total

Number of females (%)
[CI]

52 (55.9%)
[0.46–0.66]

224 (45.1%)
[0.41–0.50]

276 (46.8%)
[0.43–0.51]

Total Patients (%)
[CI]

93 (15.8%)
[0.13–0.19]

497 (84.2%)
[0.81–0.87]

590 (100%)
[0.99–1.0]

SD—Standard Deviation; CI—Confidence Interval.

3.2. AI Performance at Two Thresholds

The AI software’s performance in detecting vertebral fractures was assessed using two
thresholds for vertebral body height loss: a 20% cutoff and a 25% cutoff. The results are pro-
vided in three tables (Tables 2–4). The analysis was conducted for each individual vertebral
body rather than per patient, allowing for the inclusion of multiple fractures occurring in
single individuals. Initially, a single point was assigned for each patient without fractures,
but this understated the number of vertebrae that were separately evaluated and confirmed
as negative. Since the AI software excluded cases with fewer than four vertebrae, a decision
was made to assign four points per negative case, ensuring a consistent representation of
normal vertebral bodies in the dataset. This approach mirrors the evaluation of positive
fractures, where each fractured vertebra was assessed individually, and allows for more
accurate calculations of specificity and negative predictive value.

Table 2. Results for 20% cutoff AI fracture detection.

AI Fracture Present Fracture Absent Total

Positive True positive 138 False Positive 699 837
Negative False Negative 12 True Negative 780 792
Total 150 1479

Table 3. Results for 25% cutoff AI fracture detection.

AI Fracture Present Fracture Absent Total

Positive True positive 117 False Positive 112 229
Negative False Negative 33 True Negative 1812 1845
Total 150 1924

Table 4. Calculated metrics.

Metrics 20% AI Cutoff [CI] 25% AI Cutoff [CI]

Sensitivity 92.0% [0.87–0.95] 78.0% [0.71–0.84]
Specificity 52.7% [0.50–0.55] 94.2% [0.93–0.95]

Positive Predictive Value (PPV) 16.5% [0.14–0.19] 51.1% [0.45–0.58]
Negative Predictive Value (NPV) 98.5% [0.97–0.99] 98.2% [0.98–0.99]

CI—Confidence Interval.

At the 20% cutoff, the AI demonstrated high sensitivity (92.0%), detecting most frac-
tures but at the cost of low specificity (52.7%) and a high false-positive rate, leading to a
low PPV (16.5%). In contrast, the 25% cutoff improved the specificity (94.2%) and PPV
(51.1%), reducing false positives but lowering sensitivity (78.0%), resulting in more missed
fractures. Despite these trade-offs, the NPV remained high for both thresholds (98.5% and
98.2%), indicating strong reliability in ruling out fractures.
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3.3. False Positives

Large amounts of false positives (Figure 2) reported by the AI at the 20% threshold
largely fall into categories such as physiological/osteoarthritic wedging, endplate irreg-
ularities, edge of field of view effects, and scoliosis. A total of 146 patients were deemed
to have fractures attributed to physiological/osteoarthritic wedging, which refers to mild
anterior vertebral wedging not linked to acute trauma or pathological fractures. This
type of wedging can occur as part of natural spinal curvature or minor degenerative os-
teoarthritic changes and is often mistaken for a fracture by imaging software due to the
shape of the vertebra, particularly in regions like the mid-thoracic spine and thoracolum-
bar junction (Figure 2A,B). False positives were also noted from endplate irregularities,
such as Schmorl’s nodes, concavity/ballooned disk spaces, Cupid’s bow deformities, and
Scheuermann’s disease, accounting for 43 patients (Figure 2C–F). The AI also struggled to
accurately assess fractures at T1 when located at the edge of field of view effect (Figure 2G)
film, leading to 36 false positives with only one confirmed fracture. Scoliosis was noted
in seven patients, complicating the vertebral assessment due to altered spinal curvature
that often led to either incorrect vertebral numbering/labeling or overcalling fractures
(Figure 2H). Most of the AI’s false positives clustered around the 20–25% threshold. Initially,
395 out of 590 patients were flagged as potential fractures at a 20% cutoff, which reduced to
137 patients when the threshold was increased to 25%, mainly due to overdiagnosis in the
aforementioned categories.

 

Figure 2. Sagittal CT images (A–H) in 8 different patients with AI software calling false positive
fracture. (A) the white arrows show osteoarthritic wedging deformity involving vertebral bodies
T8–10; (B) the white arrows show physiological wedging deformity involving vertebral bodies
T12–L1; (C) the white arrows show endplate irregularities denoting Scheuermann’s disease, noted
in multiple lower thoracic vertebral bodies, namely T8–11; (D) the white arrow shows cupids bow
deformity noted in lumbar vertebral bodies L4–L5; (E) the white arrows show concavity/ballooned
disk spaces noted in lumbar vertebral bodies L1–L4; (F) the white arrows show Schmorl’s node
involving vertebral bodies T11–12. Fractures of T7 and T9 vertebral bodies were accurately identified;
(G) the white arrows show edge of field of view overcalls involving the T1 vertebral body that appears
normal; (H) the white arrows show T6 fracture overcall in a patient with scoliosis.
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3.4. Detection of Missed Fractures

A secondary objective of our study was to determine the prevalence of missed vertebral
compression fractures in outpatient CT scans at our institution. With a total of 150 fractures,
at the 20% cutoff, radiologists identified 54.7% of fractures, leaving 68 fractures undetected.
The AI software identified 60 of these previously undetected fractures, successfully detect-
ing 88% of the fractures that radiologists had initially missed. At the 25% cutoff, radiologists
detected 66.7% of fractures, leaving 50 fractures undetected. The AI software identified 46
of these previously undetected fractures, successfully detecting 92% of the fractures that
radiologists had initially missed.

4. Discussion
This study validated the performance of the HealthOST software in detecting verte-

bral compression fractures on outpatient CT scans, emphasizing the impact of threshold
selection on diagnostic accuracy. A 20% vertebral height loss threshold demonstrated high
sensitivity (92.0%), making it an effective screening tool for minimizing missed fractures.
However, its lower specificity (52.7%) results in more false positives, which can lead to
overdiagnosis. This makes it ideal for health systems prioritizing early detection and maxi-
mizing fracture identification provided there is a structured workflow to manage follow-up.
Conversely, the 25% threshold offers improved specificity (94.2%) and a higher positive
predictive value (PPV), reducing false positives and unnecessary imaging. Institutions
with limited follow-up capacity may favor the 25% threshold, while those focused on com-
prehensive fracture detection may opt for the 20% threshold to ensure early intervention.
Importantly, the negative predictive value (NPV) remains high across both thresholds,
indicating the AI’s strong ability to reliably confirm negative cases. Given the trade-off
between sensitivity and specificity and the potential for false positives, particularly at lower
thresholds, a secondary radiologist review is recommended to ensure diagnostic accuracy
and minimize unnecessary follow-ups.

Ultimately, the selection of the optimal threshold should not only align with institu-
tional priorities but also consider the clinical significance of mild fractures. Some studies
have shown that identifying and treating mild incidental vertebral fractures reduce future
fracture by facilitating earlier osteoporosis management [31–33]. However, there are also
other studies that indicate that mild fractures alone do not significantly alter future fracture
risk unless accompanied with additional osteoporosis risk factors [34,35]. While early de-
tection at a lower threshold may allow for proactive osteoporosis management, radiologists
and clinicians may choose to focus on moderate and severe fractures (>25% vertebral height
loss) given their stronger predictive value for future osteoporotic fractures [36–38].

The AI does not assess fracture acuity, and no acute fractures were identified in
this dataset, consistent with the outpatient nature of the study population. Among the
590 fractures reviewed, 580 were chronic, and 10 were classified as subacute or chronic.
According to Lentle et al., morphometric criteria may be less effective than morphological
criteria in fracture grading, as defined by the mABQ grading system [31]. However, due
to the limitations of Nanox.AI, morphological signs were not assessed. One important
point to note is that the Nanox.AI software estimates vertebral body height loss based on
intravertebral measurements (comparing cortices within the same vertebrae), unlike the
intervertebral measurements (comparing the affected vertebral cortex to adjacent vertebrae)
often used in practice [39,40]. This discrepancy can result in the overcalling of fractures
like those discussed above for physiological/osteoarthritic wedging. This discrepancy also
caused variable GSQ grading between the radiologist and AI software.

The most common reason for fractures being missed by the AI was their location
at the edge of the scan’s field of view, where incomplete vertebral visualization affected
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assessment. The second most frequent cause was borderline height loss (20–25%), which
led to discrepancies between AI detection and radiologist interpretation. This is likely
due to AI’s reliance on intravertebral height assessment (comparing cortices within the
same vertebra), whereas radiologists typically assess fractures using an intervertebral
method, comparing the affected vertebra to adjacent levels. These findings suggest that
refining AI algorithms, particularly in recognizing fractures at scan boundaries and better
aligning vertebral height measurement methods with radiologist practices, could enhance
detection accuracy.

The initial radiologists’ report revealed significant differences in fracture detection
compared to the AI. At the 20% cutoff, the radiologists detected 54.7% of fractures, leaving
68 undetected, of which the AI identified 60 (88%). At the 25% cutoff, the radiologists de-
tected 66.7%, leaving 50 undetected, with the AI identifying 46 (92%). It is important to note
that all cases were outpatient studies with unrelated clinical indications. This highlights the
AI’s capability to assist in fracture detection and to supplement radiologist interpretation.

Recent studies evaluating AI applications in vertebral fracture detection have reported
consistently high sensitivity and specificity, reinforcing the reliability of AI models [41,42].
For example, a deep learning system for thoracolumbar vertebral fractures on CT demon-
strated a sensitivity of 95.23% and a specificity of 98.35% [43]. Systematic reviews further
highlighted AI’s effectiveness with sensitivity and specificity that varied among different
AI models but remained high across most studies, with sensitivity ranging from 62 to 97%
and specificity ranging from 83 to 100% [44]. Additionally, another systematic review and
meta-analysis evaluating machine learning models for vertebral fracture diagnosis reported
a sensitivity of 93% and a specificity of 96% for osteoporotic fractures [45]. A retrospective
analysis similar to our study reported that for moderate and severe (25% height loss and
above) VCFs, the AI algorithm achieved 85.2% sensitivity, 92.3% specificity, a 57.8% positive
predictive value, and a 98.1% negative predictive value, further demonstrating AI’s clinical
utility in identifying higher-grade fractures [46]. Burns et al. also developed an automated
system that achieved high sensitivity (95.7%) and a low false-positive rate for vertebral com-
pression fracture detection, with strong Genant-based classification accuracy (accuracy 0.95;
κ = 0.90) [27]. Another study evaluating a deep learning model for acute vertebral fractures
on routine chest and abdominal CT scans also demonstrated high accuracy and precision,
further supporting the use of AI in opportunistic screening [47]. These findings align with
our results and further support AI’s role in enhancing vertebral fracture detection.

This study has some limitations. As a single-center study, its findings may not fully
generalize to other populations and health care settings. Future studies should enroll larger
cohorts from multiple institutions and diverse demographics to validate the performance
of HealthOST across diverse patient populations. Additionally, as a retrospective study
focused on outpatient CT scans, it may not capture the full spectrum of vertebral fractures,
particularly those seen in acute or inpatient settings potentially affecting fracture prevalence
and AI performance characteristics. A key technical limitation of the AI software is its
reliance on intravertebral evaluation, where vertebral height loss is assessed within the
same vertebra rather than comparing it to adjacent vertebrae (intervertebral evaluation).
This can lead to discrepancies in fracture grading and overcalls, particularly in cases
of physiological wedging. While scans with partial vertebral visualization may contain
clinically significant findings, HealthOST requires at least four contiguous vertebrae for
accurate segmentation. As a result, scans with fewer vertebrae cannot be reliably processed
and are excluded, which we acknowledge as a limitation of the current software version.
It is important to note that around the time of this paper’s publication, Nanox had nearly
completed adjustments to its software to address edge of field of view overcalls. This
highlights the ongoing evolution of Nanox.AI technology, reinforcing the notion that AI
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systems will continue to improve in accuracy and adaptability. Such refinements are
crucial for advancing AI’s role in clinical practice, ultimately enhancing patient care and
diagnostic confidence.

5. Conclusions
This study presents a clinical validation of the HealthOST AI software for the detection

of incidental vertebral compression fractures on routine chest and abdominal CT scans.
At the 20% cutoff, the AI demonstrated high sensitivity (92.0%), capturing most fractures
but with lower specificity (52.7%) and a low PPV (16.5%) due to more false positives. At
the 25% threshold, the specificity (94.2%) and PPV (51.1%) improved, but the sensitivity
decreased (78.0%), resulting in more missed cases. These findings support the use of AI in
opportunistic fracture screening, with threshold selection tailored to clinical priorities, fa-
voring higher sensitivity for broad screening or higher specificity for confirmatory purposes.
Furthermore, our secondary analysis demonstrated that the AI detected several fractures
that were missed in original radiology reports, reinforcing its value as a supportive tool in
routine clinical practice.

Author Contributions: Conceptualization, D.P. and E.B.; methodology, V.M., D.P., S.S. and E.B.;
validation, V.M., N.K.R., D.P. and E.B.; formal analysis, V.M. and N.K.R.; investigation, V.M., D.P.,
N.K.R. and S.S.; data curation, V.M., D.P. and N.K.R.; writing—original draft preparation, V.M.;
writing—review and editing, D.P., E.B. and N.K.R.; supervision, E.B.; funding acquisition, E.B. All
authors have read and agreed to the published version of the manuscript.

Funding: Earl Bogoch received an unrestricted research grant from Amgen Canada Inc., with full
control retained over the project’s design, execution, and publication.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Unity Health Toronto (Protocol code
21-183; date of initial approval: 26 August 2021).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of the
study using de-identified imaging data. The project was approved by our institutional research ethics
board, which waived the need for informed consent.

Data Availability Statement: Restrictions apply to the datasets presented in this article. The datasets
are not readily available because they are governed by institutional and ethical restrictions under our
research ethics board (REB) and because portions of the data were generated using proprietary AI soft-
ware from Nanox.AI. Requests to access the datasets should be directed to the corresponding author.

Conflicts of Interest: The authors Vinu Mathew, Dawn Pearce, Sidharth Saini, and Noah Kates
Rose declare that they have no conflicts of interest to disclose. Earl Bogoch received an unrestricted
research grant from Amgen Canada Inc., with full control retained over the project’s design, execution,
and publication.

Abbreviations
The following abbreviations are used in this manuscript:

VCF Vertebral compression fractures
PPV Positive predictive value
NPV Negative predictive value
AI Artificial intelligence
GSQ Genant semiquantitative
QM Quantitative morphometry
mABQ Morphological algorithm-based qualitative



Diagnostics 2025, 15, 1530 10 of 12

References
1. Public Health Agency of Canada. Osteoporosis and Related Fractures in Canada: Report from the Canadian Chronic Disease

Surveillance System. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/
osteoporosis-related-fractures-2020.html (accessed on 8 June 2025).

2. Ballane, G.; Cauley, J.A.; Luckey, M.M.; El-Hajj Fuleihan, G. Worldwide Prevalence and Incidence of Osteoporotic Vertebral
Fractures. Osteoporos. Int. 2017, 28, 1531–1542. [CrossRef]

3. Bell, A.; Kendler, D.L.; Khan, A.A.; Shapiro, C.M.M.; Morisset, A.; Leung, J.-P.; Reiner, M.; Colgan, S.M.; Slatkovska, L.; Packalen,
M. A Retrospective Observational Study of Osteoporosis Management after a Fragility Fracture in Primary Care. Arch. Osteoporos.
2022, 17, 75. [CrossRef] [PubMed]

4. Kendler, D.L.; Adachi, J.D.; Brown, J.P.; Juby, A.G.; Kovacs, C.S.; Duperrouzel, C.; McTavish, R.K.; Cameron, C.; Slatkovska, L.;
Burke, N. A Scorecard for Osteoporosis in Canada and Seven Canadian Provinces. Osteoporos. Int. J. Establ. Result Coop. Eur.
Found. Osteoporos. Natl. Osteoporos. Found. USA 2021, 32, 123–132. [CrossRef]

5. McArthur, C.; Lee, A.; Alrob, H.A.; Adachi, J.D.; Giangregorio, L.; Griffith, L.E.; Morin, S.; Thabane, L.; Ioannidis, G.; Lee, J.; et al.
An Update of the Prevalence of Osteoporosis, Fracture Risk Factors, and Medication Use among Community-Dwelling Older
Adults: Results from the Canadian Longitudinal Study on Aging (CLSA). Arch. Osteoporos. 2022, 17, 31. [CrossRef] [PubMed]

6. Tarride, J.-E.; Burke, N.; Leslie, W.D.; Morin, S.N.; Adachi, J.D.; Papaioannou, A.; Bessette, L.; Brown, J.P.; Pericleous, L.; Muratov,
S.; et al. Loss of Health Related Quality of Life Following Low-Trauma Fractures in the Elderly. BMC Geriatr. 2016, 16, 84.
[CrossRef] [PubMed]

7. Genant, H.K.; Cooper, C.; Poor, G.; Reid, I.; Ehrlich, G.; Kanis, J.; Nordin, B.E.; Barrett-Connor, E.; Black, D.; Bonjour, J.P.; et al.
Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos. Int. J. Establ.
Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 1999, 10, 259–264. [CrossRef]

8. Cai, W.; Ji, C.; Rong, Y.; Wang, J. Risk Factors for Refracture Following Primary Osteoporotic Vertebral Compression Fractures.
Pain Physician 2021, 24, E335–E340. [CrossRef]

9. Tatangelo, G.; Watts, J.; Lim, K.; Connaughton, C.; Abimanyi-Ochom, J.; Borgström, F.; Nicholson, G.C.; Shore-Lorenti, C.; Stuart,
A.L.; Iuliano-Burns, S.; et al. The Cost of Osteoporosis, Osteopenia, and Associated Fractures in Australia in 2017. J. Bone Miner.
Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 616–625. [CrossRef]

10. Khosla, S.; Hofbauer, L.C. Osteoporosis Treatment: Recent Developments and Ongoing Challenges. Lancet Diabetes Endocrinol.
2017, 5, 898–907. [CrossRef]

11. Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and Economic Burden of Osteoporosis-
Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2007, 22, 465–475.
[CrossRef]

12. Adachi, J.D.; Loannidis, G.; Berger, C.; Joseph, L.; Papaioannou, A.; Pickard, L.; Papadimitropoulos, E.A.; Hopman, W.; Poliquin,
S.; Prior, J.C.; et al. The Influence of Osteoporotic Fractures on Health-Related Quality of Life in Community-Dwelling Men
and Women across Canada. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2001, 12,
903–908. [CrossRef] [PubMed]

13. Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini,
S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544.
[CrossRef] [PubMed]

14. Adachi, J.D.; Brown, J.P.; Schemitsch, E.; Tarride, J.-E.; Brown, V.; Bell, A.D.; Reiner, M.; Packalen, M.; Motsepe-Ditshego, P.; Burke,
N.; et al. Fragility Fracture Identifies Patients at Imminent Risk for Subsequent Fracture: Real-World Retrospective Database
Study in Ontario, Canada. BMC Musculoskelet. Disord. 2021, 22, 224. [CrossRef]

15. Johansson, H.; Siggeirsdóttir, K.; Harvey, N.C.; Odén, A.; Gudnason, V.; McCloskey, E.; Sigurdsson, G.; Kanis, J.A. Imminent Risk
of Fracture after Fracture. Osteoporos. Int. 2017, 28, 775–780. [CrossRef]

16. Balasubramanian, A.; Zhang, J.; Chen, L.; Wenkert, D.; Daigle, S.G.; Grauer, A.; Curtis, J.R. Risk of Subsequent Fracture after Prior
Fracture among Older Women. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30,
79–92. [CrossRef]

17. Zhu, X.; Chen, L.; Pan, L.; Zeng, Y.; Fu, Q.; Liu, Y.; Peng, Y.; Wang, Y.; You, L. Risk Factors of Primary and Recurrent Fractures in
Postmenopausal Osteoporotic Chinese Patients: A Retrospective Analysis Study. BMC Womens Health 2022, 22, 465. [CrossRef]

18. Hinde, K.; Maingard, J.; Hirsch, J.A.; Phan, K.; Asadi, H.; Chandra, R.V. Mortality Outcomes of Vertebral Augmentation
(Vertebroplasty and/or Balloon Kyphoplasty) for Osteoporotic Vertebral Compression Fractures: A Systematic Review and
Meta-Analysis. Radiology 2020, 295, 96–103. [CrossRef] [PubMed]

19. Black, D.M.; Arden, N.K.; Palermo, L.; Pearson, J.; Cummings, S.R.; for the Study of Osteoporotic Fractures Research Group.
Prevalent Vertebral Deformities Predict Hip Fractures and New Vertebral Deformities but Not Wrist Fractures. J. Bone Miner. Res.
1999, 14, 821–828. [CrossRef]

20. McCarthy, J.; Davis, A. Diagnosis and Management of Vertebral Compression Fractures. Am. Fam. Physician 2016, 94, 44–50.

https://www.canada.ca/en/public-health/services/publications/diseases-conditions/osteoporosis-related-fractures-2020.html
https://www.canada.ca/en/public-health/services/publications/diseases-conditions/osteoporosis-related-fractures-2020.html
https://doi.org/10.1007/s00198-017-3909-3
https://doi.org/10.1007/s11657-022-01110-z
https://www.ncbi.nlm.nih.gov/pubmed/35513573
https://doi.org/10.1007/s00198-020-05554-2
https://doi.org/10.1007/s11657-022-01073-1
https://www.ncbi.nlm.nih.gov/pubmed/35122160
https://doi.org/10.1186/s12877-016-0259-5
https://www.ncbi.nlm.nih.gov/pubmed/27093957
https://doi.org/10.1007/s001980050224
https://doi.org/10.36076/ppj.2021/24/E335
https://doi.org/10.1002/jbmr.3640
https://doi.org/10.1016/S2213-8587(17)30188-2
https://doi.org/10.1359/jbmr.061113
https://doi.org/10.1007/s001980170017
https://www.ncbi.nlm.nih.gov/pubmed/11804016
https://doi.org/10.3390/ijerph13060544
https://www.ncbi.nlm.nih.gov/pubmed/27240395
https://doi.org/10.1186/s12891-021-04051-9
https://doi.org/10.1007/s00198-016-3868-0
https://doi.org/10.1007/s00198-018-4732-1
https://doi.org/10.1186/s12905-022-02034-z
https://doi.org/10.1148/radiol.2020191294
https://www.ncbi.nlm.nih.gov/pubmed/32068503
https://doi.org/10.1359/jbmr.1999.14.5.821


Diagnostics 2025, 15, 1530 11 of 12

21. Johnell, O.; Kanis, J.A.; Odén, A.; Sernbo, I.; Redlund-Johnell, I.; Petterson, C.; De Laet, C.; Jönsson, B. Mortality after Osteoporotic
Fractures. Osteoporos. Int. 2004, 15, 38–42. [CrossRef]

22. Spiegl, U.J.; Hölbing, P.-L.; Jarvers, J.-S.; Höh, N.v.d.; Pieroh, P.; Osterhoff, G.; Heyde, C.-E. Midterm Outcome after Posterior
Stabilization of Unstable Midthoracic Spine Fractures in the Elderly. BMC Musculoskelet. Disord. 2021, 22, 188. [CrossRef]
[PubMed]

23. Borgen, T.T.; Bjørnerem, Å.; Solberg, L.B.; Andreasen, C.; Brunborg, C.; Stenbro, M.-B.; Hübschle, L.M.; Froholdt, A.; Figved, W.;
Apalset, E.M.; et al. Post-Fracture Risk Assessment: Target the Centrally Sited Fractures First! A Substudy of NoFRACT. J. Bone
Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 2036–2044. [CrossRef]

24. Fink, H.A.; Milavetz, D.L.; Palermo, L.; Nevitt, M.C.; Cauley, J.A.; Genant, H.K.; Black, D.M.; Ensrud, K.E. What Proportion of
Incident Radiographic Vertebral Deformities Is Clinically Diagnosed and Vice Versa? J. Bone Miner. Res. 2005, 20, 1216–1222.
[CrossRef] [PubMed]

25. Hatgis, J.; Granville, M.; Jacobson, R.E. Delayed Recognition of Thoracic and Lumbar Vertebral Compression Fractures in Minor
Accident Cases. Cureus 2017, 9, e1050. [CrossRef]

26. Lentle, B.; Koromani, F.; Brown, J.P.; Oei, L.; Ward, L.; Goltzman, D.; Rivadeneira, F.; Leslie, W.D.; Probyn, L.; Prior, J.; et al. The
Radiology of Osteoporotic Vertebral Fractures Revisited. J. Bone Miner. Res. 2019, 34, 409–418. [CrossRef] [PubMed]

27. Burns, J.E.; Yao, J.; Summers, R.M. Vertebral Body Compression Fractures and Bone Density: Automated Detection and
Classification on CT Images. Radiology 2017, 284, 788–797. [CrossRef]

28. Nazrun, A.S.; Tzar, M.N.; Mokhtar, S.A.; Mohamed, I.N. A Systematic Review of the Outcomes of Osteoporotic Fracture Patients
after Hospital Discharge: Morbidity, Subsequent Fractures, and Mortality. Ther. Clin. Risk Manag. 2014, 10, 937–948. [CrossRef]

29. Mills, E.S.; Hah, R.J.; Fresquez, Z.; Mertz, K.; Buser, Z.; Alluri, R.K.; Anderson, P.A. Secondary Fracture Rate After Vertebral
Osteoporotic Compression Fracture Is Decreased by Anti-Osteoporotic Medication but Not Increased by Cement Augmentation.
J. Bone Joint Surg. Am. 2022, 104, 2178–2185. [CrossRef]

30. Lentle, B.C.; Berger, C.; Probyn, L.; Brown, J.P.; Langsetmo, L.; Fine, B.; Lian, K.; Shergill, A.K.; Trollip, J.; Jackson, S.; et al.
Comparative Analysis of the Radiology of Osteoporotic Vertebral Fractures in Women and Men: Cross-Sectional and Longitudinal
Observations from the Canadian Multicentre Osteoporosis Study (CaMos). J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
2018, 33, 569–579. [CrossRef]

31. Lentle, B.C.; Berger, C.; Brown, J.P.; Probyn, L.; Langsetmo, L.; Hammond, I.; Hu, J.; Leslie, W.D.; Prior, J.C.; Hanley, D.A.; et al.
Vertebral Fractures: Which Radiological Criteria Are Better Associated With the Clinical Course of Osteoporosis? Can. Assoc.
Radiol. J. 2021, 72, 150–158. [CrossRef]

32. Adams, J.E. Opportunistic Identification of Vertebral Fractures. J. Clin. Densitom. 2016, 19, 54–62. [CrossRef] [PubMed]
33. Yusuf, A.A.; Cummings, S.R.; Watts, N.B.; Feudjo, M.T.; Sprafka, J.M.; Zhou, J.; Guo, H.; Balasubramanian, A.; Cooper, C.

Real-World Effectiveness of Osteoporosis Therapies for Fracture Reduction in Post-Menopausal Women. Arch. Osteoporos. 2018,
13, 33. [CrossRef] [PubMed]

34. Skjødt, M.K.; Nicolaes, J.; Smith, C.D.; Olsen, K.R.; Cooper, C.; Libanati, C.; Abrahamsen, B. Fracture Risk in Men and Women
With Vertebral Fractures Identified Opportunistically on Routine Computed Tomography Scans and Not Treated for Osteoporosis:
An Observational Cohort Study. JBMR Plus 2023, 7, e10736. [CrossRef] [PubMed]

35. Kendler, D.L.; Bauer, D.C.; Davison, K.S.; Dian, L.; Hanley, D.A.; Harris, S.T.; McClung, M.R.; Miller, P.D.; Schousboe, J.T.; Yuen,
C.K.; et al. Vertebral Fractures: Clinical Importance and Management. Am. J. Med. 2016, 129, e1–e221. [CrossRef]

36. Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of
Osteoporosis in the World: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. 2021, 16, 609. [CrossRef]

37. Chou, S.H.; Vokes, T. Vertebral Morphometry. J. Clin. Densitom. 2016, 19, 48–53. [CrossRef]
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