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Abstract

Purpose: Osteoporosis is an underdiagnosed condition despite effective screening modalities. Dual-energy x-ray absorptiometry
(DEXA) screening, although recommended in clinical guidelines, remains markedly underutilized. In contrast to DEXA, CT utilization
is high and presents a valuable data source for opportunistic osteoporosis screening. The purpose of this study was to describe a method
to simulate lumbar DEXA scores from routinely acquired CT studies using a machine-learning algorithm.

Methods: Between January 2010 and September 2014, 610 CT studies of the abdomen and pelvis were used to develop spinal column
and L1 to L4 multiclass segmentation. DEXA simulation training and validation used 1,843 pairs of CT studies accompanied by DEXA
results obtained within a 6-month interval from the same individual. Machine learning–based regression was used to determine cor-
relation between calculated grade (on the basis of vertebrae L1-L4) and DEXA t score.

Results: Analysis of the t score equivalent, generated by the algorithm, revealed true positives in 1,144 patients, false positives in 92 patients,
true negatives in 245 patients, and false negatives in 212 patients, resulting in an accuracy of 82%. Sensitivity for the detection of osteoporosis
or osteopenia was 84.4% (95% confidence interval, 82.3%-86.2%), and specificity was 72.7% (95% confidence interval, 67.7%-77.2%).

Conclusions: The presented algorithm can identify osteoporosis and osteopenia with a high degree of accuracy (82%) and a small proportion
of false positives. Efforts to cull greater information using machine-learning algorithms from pre-existing data have the potential to have a
marked impact on population health efforts such as bone mineral density screening for osteoporosis, in which gaps in screening currently exist.
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INTRODUCTION
Osteoporosis remains a prevalent, burdensome, and
markedly underdiagnosed condition despite the avail-
ability of effective screening modalities [1-3]. Annually, 2
million fractures are attributed to osteoporosis, resulting
in more than 432,000 hospital admissions, nearly 2.5
million medical office visits, and approximately 180,000
nursing home admissions in the United States [4].
Estimated direct costs due to osteoporotic fractures total
more than $17 billion [5]. Moreover, fractures of the
hip pose a major public health burden for the elderly,
because these fractures are a major contributor to
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morbidity, impairment, decreased quality of life, and
mortality in men and women [6].

Early detection and appropriate prophylactic treat-
ment are the cornerstones of management of this public
health challenge. Clinical practice guidelines recommend
dual-energy x-ray absorptiometry (DEXA) bone mineral
density (BMD) screening for all women and men older
than 65 years [7,8]. However, DEXA screening remains
markedly underutilized. Only 19% to 37% of eligible
Medicare beneficiaries undergo BMD testing, and fewer
than 20% of all persons with major osteoporosis-related
fractures have undergone BMD testing and subsequent
pharmacologic intervention [9-13].

In contrast to the underutilization of DEXA, CT
utilization is high and consistently rising, with more than
70 million examinations performed annually in the
United States alone, including 148.1 studies of the
abdomen and pelvis performed per 1,000 Medicare
beneficiaries each year [14,15]. Routine CT imaging of
the abdomen has been recognized as valuable data
source for opportunistic osteoporosis screening [16].

The purpose of our study was to describe a method to
simulate lumbar DEXA BMD scores from routinely ac-
quired CT studies of the chest and/or abdomen using a
machine-learning algorithm. We report the accuracy of
algorithmic BMD scoring compared with that obtained
in the same population by DEXA scans performed within
an interval of 6 months.
Table 1. Distribution of CT protocols

Study Type % of Total

CT abdomen pelvis 61
CT abdomen and chest 31
CT chest 5
CT urography 2
CT skeletal 1
CT colonography 1
METHODS

Data
All imaging examinations were performed as part of
routine clinical practice between January 2010 and
September 2014 at more than 10 hospitals within an
integrated health care system and collected retrospec-
tively. All personal health information was removed
before data acquisition, in compliance with HIPAA
standards. The study population comprised 70.8%
women and 29.2% men. All patients were 50 to 80 years
of age.

Six hundred ten CT studies of the abdomen and
pelvis were used in the development of spinal column and
L1 to L4 multiclass segmentation. In total, 52% of
studies used intravenous contrast.

The distribution of CT protocols is depicted in
Table 1.

DEXA simulation training and validation
involved 1,843 pairs of CT studies accompanied by
DEXA results obtained within a 6-month interval
2
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from the same individual. Axial DICOM re-
constructions of up to 3-mm slice thickness were
used for all further planar reconstructions; raw si-
nusoidal data were not used.
Methods
A schematic view of the deep-learning framework is
provided in Figure 1. The framework combines two key
components: vertebrae multiclass segmentation and per-
vertebra regression, as described below.
Segmentation Process
The vertebral cortical circumference was extracted
and mapped into two dimensions [17]. Of note,
vertebra-specific segmentation in this model relies
on the presence of intervertebral discs and may be
limited in circumstances of advanced discogenic
disease. To enhance vertebral segmentation in such
circumstances, Forstner interest points were extracted
on the entire image, followed by foreground and
background per point classification using a random
forest classifier [18].

Coronal and coronal maximum-intensity projec-
tion (MIP) reconstructions were generated from axially
acquired CT data. The first lumbar vertebral body
(L1) was designated as the first non-rib-bearing
vertebra identified on a virtual coronal MIP recon-
struction. A virtual sagittal reconstruction was then
generated, whereby any scoliosis is corrected in rela-
tion to a center line on a coronal reconstruction.
Multiclass segmentation was then performed, and on
the basis of the vertebral segmentation, a simulated
DEXA score could be computed for L1 to L4
vertebrae.

The multiclass segmentation approach is based on a
cascade of two U-Nets (Figure 2). First, binary
segmentation on the vertebral column is performed in a
sagittal view. Then multiclass segmentation is
performed on the basis of coregistration of each
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Fig 1. Schematic view of the deep-learning framework.
vertebral body from the virtual sagittal and coronal MIP
reconstructions. Applying multiclass segmentation solely
on the basis of the sagittal view resulted in poor
performance because of lack of anatomic context
provided by the ribs. The segmentation process is
visually described in Figure 3.

Unlike patch-based segmentation, fully convolu-
tional neural networks add up-sampling layers to
standard convolutional neural networks to recover the
spatial resolution of the input at the output layer. To
compensate for the resolution loss induced by pooling
layers, fully convolutional neural networks introduce
skip connections between their down-sampling and up-
sampling paths.

DEXA Simulation
The volume anterior and posterior to the vertebral col-
umn was removed from the 3-D image. To identify the
optimal pixel range intensity for t score simulation, three
Fig 2.Vertebrae lumbar multiclass segmentation framework.
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machine-learning methodologies were used: linear
regression, support vector machine, and logistic regres-
sion models. Linear regression delivered the best perfor-
mance. The specific weights per vertebra (L1-L4) were as
follows: 0.00116455, 0.00106969, 0.00110523, and
0.00078648. The specific biases per vertebra
were �6.43475268, �6.69634826, �6.65447089,
and �5.39662082, respectively.

Machine learning–based regression methodologies
were thus used to determine the range of pixel intensities
in which the simulated t score and the DEXA t score were
best correlated. X-ray anteroposterior acquisition was
simulated, ignoring pixels outside the learned intensity
range to provide a summation map. The generated in-
formation was used to evaluate the simulated t score on
the basis of vertebrae L1-L4.

The average virtual t score for L1 to L4 showed little
variation on average (Table 2). Simulated t scores were
transformed to a categorical results at a threshold value of�1.
3
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Fig 3.Visual description of the segmentation process using CTdata. Key views of the patient vertebrae are extracted. Multiclass
segmentation is then performed, and on the basis of the vertebral segmentation, a simulated dual-energy x-ray absorptiometry
score is computed for L1 to L4 vertebrae.
For each obtained t score equivalent value, it was
determined whether this value was

n true positive (TP): abnormal/abnormal (if the t score
equivalent value is <�1 and the DEXA scan result is
abnormal [ie, <�1]);

n false positive (FP): abnormal/normal (if the t score
equivalent value is <�1 and the DEXA scan result is
normal [ie, ��1]);

n true negative (TN): normal/normal (if the t score
equivalent value is ��1 and the DEXA scan result is
normal [ie, ��1]); or

n false negative (FN): normal/abnormal (if the t score
equivalent value is ��1 and the DEXA scan result is
abnormal [ie, <�1]).

The categorical dichotomous result of normal was
returned for all t score equivalent scores � �1; the cat-
egorical dichotomous result of abnormal was returned for
all t score equivalent scores < �1.
RESULTS

Achievement of the t Score Equivalent Value
A total of 1,693 CT studies with corresponding DEXA
imaging within a 6-month interval were used for vali-
dation testing of the algorithm. The segmentation al-
gorithm was trained, tested, and validated on a separate
data set of more than 10,000 CT studies. The CT-to-
DEXA conversion algorithm was fit on the basis of
20% of the 1,693 CT-DEXA combinations. These
were included in the validation analysis of the entire set
Table 2. Average virtual t scores for L1 to L4

L1 L2 L3 L4

Average virtual t score �1.47 �1.59 �1.03 �1.16
SD 1.44 1.58 1.65 1.67
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of 1,693 CT-DEXA combinations, representing a risk
for overfitting.
t Score Equivalent Compared With Recorded
DEXA t Score
Analysis of the t score equivalent provided by the presented
algorithm revealed TPs for 1,144 patients, FPs for 92 pa-
tients, TNs for 245 patients, and FNs for 212 patients.
Specificity, Sensitivity, and Accuracy of the
Software
In total, results for 1,389 patients were defined as “true”
(ie, concordant with the recorded DEXA results), result-
ing in an accuracy of 82%. The software detected osteo-
porosis or osteopenia in the vast majority of cases with
calculated sensitivity of 84.4% (95% confidence interval,
82.3%-86.2%). The specificity was 72.7% (95% confi-
dence interval, 67.7%-77.2%). The Pearson correlation
achieved was 0.8524 (Fig. 4); the Bland-Altman results
were 1.96 � SD ¼ 1.56 (Fig. 5). Of note, no significant
difference between the algorithmic predictive accuracy
was noted when testing men and women separately.
DISCUSSION
Osteoporosis affects one-third of women and one-fifth of
men older than 50 years. The prevalence of osteoporosis
is expected to increase as the global population ages
because of the inverse relationship between bone density
and age. Moreover, 80% of those at risk are not identified
or treated. Approximately 2 million fractures occur
annually in the United States because of the consequences
of unaddressed osteoporosis, resulting in approximately
$17 billion in health care expenditures. Patients who
sustain osteoporotic fractures experience significant
degradation in their quality of life: 25% of patients with
hip fractures end up in nursing homes within 12 months
Journal of the American College of Radiology
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Fig 4. Pearson correlation: dual-energy x-ray absorptiometry (DEXA) t score versus simulated t score.
of their fractures. Despite the detrimental effects and the
availability of effective prophylactic treatments, a very
small proportion of the population older than 50 years
actively undergoes DEXA scans, the gold standard for
diagnosis of osteoporosis.

CT scans are performed much more often than
DEXA scans in patients older than 50 years and hence
provide an opportunity to identify those at risk for
osteoporotic fracture. Abdominal and chest CT scans
are obtained for various clinical indications. The
interpreting radiologist may comment on particular
destructive or blastic bone lesions, but it is uncommon
for a radiologist to comment on overall BMD or to
suggest a diagnosis of osteoporosis on the basis of CT
data. Routine manual or visual assessment of bone
Fig 5. Bland-Altman results: dual-energy x-ray absorptiometry (D
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mineralization on every CT scan of the chest and
abdomen would significantly alter radiologist workflow
and decrease work productivity. Even osteoporotic
vertebral body fractures seen on CT are unlikely to be
reported, unless the clinical indication for the study
relates directly to that observation [19].

In our analysis, using chest and abdominal CT scans
from more than 1,000 patients, we demonstrate that the
presented algorithm can identify osteoporosis and osteo-
penia with a high degree of accuracy (82%) and a small
proportion of FPs.

On the basis of these results, the majority of pa-
tients with underlying osteoporosis or osteopenia who
undergo chest or abdominal CT can be accurately
identified using our proposed CT-targeted DEXA
EXA) t score versus simulated t score.
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screening. To our knowledge, previous similar-sized
studies have not produced CT t scores using a fully
automated tool that allows large-scale implementation
and could not reach a similar accuracy.

On the basis of extrapolation of our health main-
tenance organization’s volume of DEXA and CT scans,
a CT-targeted DEXA screening initiative has the po-
tential to increase annual osteoporosis diagnoses by
approximately 50%, with a 2.7-fold improvement in
pretest probability.

Our study had the following potential limitations:
restricting the source area for the simulation to exclu-
sively the lumbar vertebrae, using DEXA as the basis
for training, and using data only from a single inte-
grated health system. DEXA scans typically sample
multiple sites, including the radius and ulna, femur,
and lumbar vertebrae, which are at high risk for frac-
ture, to provide a more sensitive means of detecting
osteoporosis, which can be regionally heterogeneous.
Restricting the use of CT data to the lumbar vertebrae
may reduce sensitivity by failing to detect clinically
significant osteoporotic areas outside the lumbar spine.
As in other studies that were based on vertebral mea-
sures, we did not assess risk factors used in various
fracture risk calculators, such as the FRAX tool.
However, using data from other high-risk areas such as
the femur is inherently more complex and remains an
area of future research. Additionally, DEXA scans,
which were used as the standard for testing the validity
of using CT data to detect osteoporosis in this study,
are known to have limitations. Most notably, DEXA
has decreased sensitivity for osteoporosis in the case of
significant degenerative disease. The potential conse-
quence of this is an erroneously increased FP rate when
testing the simulated DEXA against actual DEXA data.
Last, there are potential limitations to the generaliz-
ability of the study to a broader population. Variation
between populations in terms of factors such as age,
comorbidities, and health maintenance habits or dif-
ferences in CT or DEXA technique between health
systems may confound the ability to extrapolate the
results of this study. Moreover there is no standard
interval between CT and DEXA to determine BMD
metrics. We chose 6 months to accrue enough retro-
spective data in a reasonable time frame. We did not
accrue enough studies to perform a statistically signif-
icant analysis of correlation for the interval between
DEXA and CT. We intend to do so in future work.

Efforts to cull greater information usingmachine-learning
algorithms from pre-existing data, as demonstrated in our
6
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study, have the potential to have a marked impact on popu-
lation health efforts such as BMD screening for osteoporosis,
in which gaps in screening currently exist.
in
op
TAKE-HOME POINTS
- Osteoporosis remains a prevalent, burdensome, and
markedly underdiagnosed condition despite the
availability of effective screening modalities.

- Although recommended by clinical practice guide-
lines, the current gold standard for osteoporosis
screening, DEXA, remains markedly underutilized.

- In contrast to the underutilization of DEXA, CT
utilization is high, presenting a valuable data source
for opportunistic osteoporosis screening.

- The machine learning–based algorithms presented
in our study can identify osteoporosis and osteo-
penia from routinely acquired CT data with a high
degree of accuracy.

- Efforts to cull greater information using machine-
learning algorithms from pre-existing data has the
potential to have a marked impact on population
health efforts such as BMD screening for osteopo-
rosis, in which gaps in screening currently exist.
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