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ABSTRACT

The amount of calcium deposits in the coronary arteries is
a powerful predictor of cardiovascular events and mortal-
ity. Agatson score measured on cardiac CT is the routine
method to identify subjects at high risk who might benefit
from proactive treatment. We present an automatic method
based on fully-convolutional deep neural network to seg-
ment coronary calcium and predict Agatston score based on
general-indication non-contrast Chest CT.

We experimented with an internal dataset acquired through
partnership with a large health organization in Israel. The
dataset is composed of 1054 Chest CTs and is highly het-
erogeneous in terms of originating institutions (15), different
acquisition devices (7) and manufacturers (3). We show
excellent results on this type of data in terms of Pearson cor-
relation coefficient (0.98), Bland-Altman analysis (bias 0.4
with 95% limits of agreement of [-189.9-190.7]) and linearly
weighted Kappa of 0.89 for the risk category assignment.

We also show results on a very large (14,365 scans)
cohort from the NLST study, showing correlation with
cardiovascular-related clinical outcome as well as the sys-
tem’s ability to proactively detect individuals at high-risk.

Index Terms— coronary calcium, deep learning, Agat-
ston score, segmentation, chest CT, computer aided diagnosis

1. INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death
in the United States [1]. The amount of coronary artery cal-
cifications (CAC) is a powerful predictor of cardiovascular
events and mortality [2]. In clinical practice CAC is identi-
fied and quantified in terms of the Agatston score [3] using
a dedicated ECG-synchronized cardiac calcium scoring CT
(CSCT), followed by a human operator manually identifying
CAC lesions using commercially available software. In recent
years it has been shown that the much more widely performed
non-ECG-synchronized chest CT (Chest CT) provides simi-
lar diagnostic information across categories of CAC scores
[4], despite the possible motion artifacts.

Several works in the last decade have attempted to pro-
vide automatic methods to estimate Agatston score from CT

scans, mostly CSCT. Išgum et al [5] presented a comprehen-
sive work for labeling data and training combination of KNN
and SVM classifiers to automatically identify CC in Chest
CT, using both local image features and location information
(based on a-priory probability map). Shahzad et at [6] de-
tected CC in CSCT scans using a KNN classifier based on
local image descriptors and location features based on CCTA
atlases. Wolterink et at [7] extended [5] for CSCT, where
they used randomized decision trees for vessel-specific CAC
classifiers and included human-in-the-loop for ambiguous de-
tections.

Advances in deep learning have enabled the extension of
convolutional neural networks (CNN) to the task of segmen-
tation of arbitrarily-shaped objects im images [8, 9, 10], also
in the medical domain[11, 12]. Lessmann et al [13] presented
patch-based CNN segmentation approach for the identifica-
tion of CC lesions in Chest CTs, where each voxel is repre-
sented by three centered orthogonal slices and classified using
three concurrent CNNs.

Unlike patch-based segmentation, fully convolutional
neural networks (FCNNs) add upsampling layers to standard
CNNs to recover the spatial resolution of the input at the
output layer. In order to compensate for the resolution loss
induced by pooling layers, FCNNs introduce skip connec-
tions between their downsampling and upsampling paths[11].
The fully-convolutional DenseNet (FC-DenseNet)[14] in-
troduces additional skip connections within the blocks, to
simultaneously exploit features from different scales.

The presented work contributions are threefold: 1. It is the
first (to our knowledge) application of FCNN-based system to
measure the CAC score from general-indication non-contrast
Chest CT, 2. Our method was rigorously validated against a
set of 200+ Chest CTs manually annotated by a committee of
three radiologists using a standard PACS workstation and 3.
We show how the algorithm predictions correlate with clinical
outcome based on large-scale data from NLST [15].

2. DATASETS

2.1. Internal

Through partnership with a large health provider in Israel,
we’ve collected 848 adult non-contrast Chest CT scans with



Risk Category Train Validation Test

0 (Zero) 15% 29% 32%
1-10 (Minimal) 3% 4% 10%
11-100 (Mild) 10% 17% 19%
101-400 (Moderate) 21% 19% 17%
>400 (Severe) 51% 31% 21%

Table 1: Agatston risk category distribution for each dataset

high prevalence of significant amount of CC, and used it for
training (512) and validation (336). For testing, we have se-
lected an additional set of 203 general indication scans re-
flecting the distribution of age and gender in the general pop-
ulation. We have removed scans with metallic artifacts and/or
signs of deforming pathology such as lung amputation and
cardiac surgery. Table 1 presents Agatston score distribution
in the datasets.

The train and validation sets were manually annotated us-
ing internally developed interactive application where the ra-
diologists could efficiently annotate large number of candi-
date CC lesions. Only voxels with HU values above the clin-
ical standard threshold for CCS of 130 were considered. Ad-
ditionally, we had 3 individual experts annotating the test-set
data using a standard CCS module on a commercial PACS
workstation (Kodak Carestream). Their Agatston scores were
averaged to establish ground-truth for reference. Scans with
very high level of disagreement between experts were dis-
carded.

2.2. National Lung Screening Trial (NLST)

The National Lung Screening Trial [15] was (2002-2007) a
large-scale clinical trial aiming to compare the efficacy of CT
screening and standard chest X-ray as methods of lung cancer
screening. Data from 14,365 patients was made available to
us by the NIH for this analysis, of whom 452 (3.15%) had
CVD related death in the 6.5 years follow-up, 3468 (24.14%)
had reported CVD history, 1838 (12.79%) had their coronary
calcium reported during the screening (not quantitatively) and
8607 (59.92%) had no documented CVD.

3. METHODS

3.1. Preprocessing

Firstly we apply a sequence of thresholding, connected com-
ponents analysis and morphological operations to to detect
the lungs, trachea and the carina (trachea bifurcation point).
Based on the location of the lungs and the carina, we apply
as set of empirical rules to detect a bounding box around
the heart. The bounding box’s shorter dimension in the ax-
ial plane is extended isotropically so as to end up with square
x-y slices. A soft tissue window (level 40, width 350), which

is clinically considered optimal for detecting CC, is applied to
the resulting volume. To provide 3d context, the volume is di-
vided into overlapping groups of 3 consecutive slices that will
later be fed into the segmentation network to provide pixel-
wise prediction for the central slice in the group.

3.2. Fully convolutional neural network

The main idea underlying FCNNs is extending a regular CNN
in which a sequence of pooling operators progressively re-
duces the spatial size of the network, by adding successive
layers where pooling operators are replaced by upsampling
operators. The two paths are commonly called ”contracting”
and ”expanding” path, respectively. Both in U-net [11] and in
the DenseNet [14] variation of FCNN, which we explore in
this paper, high resolution features from the contracting path
are combined with the upsampled output via the so-called
”skip” connections (see figure 1) in order to provide fine-grain
localization while propagating context information. A succes-
sive convolution layer can learn to combine both low and high
resolution information.

In this paper we consider both U-Net [11] and FC-
DenseNet [14] architectures. U-Net consists of 2n+1 blocks
of 3x3 convolution-dropout-batch normalization-ReLU se-
quences. Every time the spatial dimensions are halved, the
number of feature channels doubles. Between the downsam-
pling and upsampling paths there is a bottleneck block, in
which the image spatial resolution reaches about 1/16 of its
original size. Every step in the upsampling path consists of
a transposed convolution which doubles the feature map di-
mensions, a concatenation with the correspondingly feature
map from the contracting path and a U-net block. At the end
of the expanding path, a 1x1 convolution is applied followed
by a softmax, which results in a probability map of the same
spatial dimensions as the input image, and a 3rd dimension
equals the number of classes.

Fully Convolutional DenseNet is similar in its block struc-
ture to U-Net but has a higher connectivity within each block,
called dense block [16], and additional skip connections in
the contracting path (shown on Fig. 1). There is also a 1x1
convolution-dropout-batch normalization-ReLU block before
each max pooling, leading to additional n+1 convolutional
layers compared to U-Net with the same block structure.
Within a dense block, each layer is connected to all the fol-
lowing layers via concatenation of their activation maps. The
number of filters in all the convolutional layers in a dense
block is the same and denoted as g (growth rate). The number
of filters in all the 1x1 convolutional layers (except the last
one), equals the number of input channels.

3.3. Post-processing

After feeding all the cropped axial slices through the network,
a ”prediction” volume is assembled where each voxel’s inten-
sity represent its probability of being a coronary calcium. To



Fig. 1: (a) Generic (for brevity) architecture of U-Net, (b) Generic architecture of a Fully Convolutional DenseNet.

determine the correct threshold for classifying a voxel as CC,
we used the validation dataset. First we identify 2d candidate
blobs on each axial slice by thresholding with 130 HU and
conducting connected-components analysis. Then we char-
acterize each blob by its 95% percentile probability value.
Then we exhaustively search for the best threshold in terms
of smallest standard deviation of the difference between the
predicted Agatston score and the reference, while limiting the
search to small bias values (less than 3). Finally, calculation
of the Agatston score is done following the clinically accepted
protocol described in [3].

4. EXPERIMENTS AND RESULTS

We have trained both FC-DenseNet and U-net. FC-DenseNet
was composed of 5 blocks on each path with 4 layers in each
block and growth rate g=12, total of 56 convolutional lay-
ers. U-Net design followed closely that of [11] - 23 layers
with 4 blocks on each path. Both architectures were trained
using weighted cross-entropy loss applied on the prediction
amp and L2 weight regularization of 0.0001, for 40000 itera-
tions (roughly 13 epochs) and optimized using RMSProp. We
used batches of 12 randomly cropped (up to 75% of the orig-
inal size) images. We started with learning-rate of 1e-4 and
employed exponential decay policy with decay-rate of 0.5 ev-
ery 8000 iterations. Both networks were implemented using
TensorFlow and were trained for approx. 12-14 hours on 3
NVIDIA K80s.

Model selection was done based on the best performing
checkpoint with regard to the validation dataset. The same
model & parameters were used for all of the experiments.

4.1. Internal

All results reported in this section are based on our test
dataset, which was not used during training nor validation.
We only report results with regard to the Agatston score, since
it is the most clinically relevant measure. We present both
a scatter plot showing correlation between the 203 reference
and predicted scores in Fig. 2, and a bland-Altman plot in
Fig. 3. Fig. 4 shows an examples of segmented calcifications.

In terms of the Pearson correlation coefficient, we achieved
r=0.98 (p <0.0001) between the reference and predicted
Agatson score. Bland-Altman analysis shows a very small
bias of 0.4 with 95% limits of agreement of [-189.9-190.7].
Only 3.9% of the samples lie outside the region of agreement.
For comparison, the U-Net architecture achieved Pearson
0.97 but introduced bias of -14.5 with limits of agreement of
[-252.0-222.9].

We present a risk category agreement Table 2. Linearly
weighted Kappa score was 0.89, with 84.7% of the scans
placed in the correct category. Another 11.3% were placed
only one category away, with almost 55% of the mistakes
contributed by confusing the first (zero) and second (1-10)
categories, which are both difficult to tell apart and highly
sensitive for even a very small mistake. The U-Net architec-
ture achieved Kappa of 0.86 with only 81.8% of the scans
placed in the correct category.

4.2. National Lung Screening Trial (NLST)

Applying the algorithm on a large cohort of patients with
known CVD history and 6.5 years follow-up provided some
very interesting insights. We’ll provide a few highlights since
a more in depth review of this experiment is pending publica-
tion elsewhere:



0 500 1000 1500 2000 2500 3000
Predicted

0

500

1000

1500

2000

2500

3000

Ac
tu
al

Pearson's correlation coefficient = 0.98

Agatston Score

Fig. 2: Reference Agatston score vs. predicted Agatston score
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Fig. 3: Bland-Altman plot

1. 1% of the patients with a calculated CCS of zero died dur-
ing the follow-up. Comparatively, 4% of those with scores
above 400 and 6% of those with scores above 1000 died in
the same interval. So we see a correlation of the calculated
CCS with the risk of cardiovascular-related death.

2. There’s an exponential correlation of CVD with increas-
ing Agatston score: for risk categories I-III (0-100), 13%
reported having heart attack or stroke in the past. That
doubles (22%) for category IV (101-400), and doubles
again (45%) for the highest category (>400).

3. Radiologists under-report the coronary calcium burden:
among patients with scores over 400, 32% were not read
as having coronary calcium. Among people whose score
is between 100 and 400, 57% were not reported. This
alone shows the kind of impact routine application of CCS
algorithm on regular Chest CTs can have.

5. SUMMARY AND CONCLUSIONS

We have presented a fully-automated system to estimate the
Agatston calcium score in general-indication non-contrast

(a) (b)

Fig. 4: Examples of segmentation results: (a) Accurate
segmentation of calcifications in the LM coronary artery,
LCX and LAD, (b) additional false-positive in the aorta wall
(marked with an arrow)
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I II III IV V Total
I 72 17 6 0 0 95
II 0 3 2 0 0 5
III 1 0 27 1 1 30
IV 0 0 1 34 1 36
V 0 0 0 1 36 37

Total 73 20 36 36 38 203

Table 2: Agreement in cardiovascular risk categorization (I:
0, II: 1-10, III: 11-100, IV: 101-400 and V: >400) based on
Agatston score predicted by the algorithm vs. the reference.

Chest CT scans that yields high Pearson correlation (0.98),
high level of agreement based on Bland-Altman analysis and
very good risk category stratification (Kappa of 0.89). Ad-
ditionally, our method was applied to a large cohort (∼15K
scans) of NLST data and showed very good correlation with
clinical outcome. We have evaluated two network architec-
tures: the popular U-Net [11] and the more recent DenseNet
[14] which proved to be superior in terms of CCS prediction.

The main sources of confusion for our algorithm were a.
false-positive calcified mitral valve and b. confusion between
calcifications in the aorta and in the coronary arteries very
close to the aortic wall. We consider extending our tagging
effort in the future to account for these cases and add them as
separate classes during training.

The orCaScore challenge [17] offers a public dataset to
evaluate algorithms for CCS prediction. However, the data in
the challenge is cardiac CT while we address the much more
common Chest CT, therefore currently the challenge is not
applicable to our method.

We plan apply our system it in a real clinical setting soon
to enable early detection of individual at risk of CVD.
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